
Rose: Extensible Autodiff on the Web
Raven Rothkopf

rgr2124@barnard.edu

Barnard College, Columbia University

Sam Estep

estep@cmu.edu

Carnegie Mellon University

Joshua Sunshine

sunshine@cs.cmu.edu

Carnegie Mellon University

ABSTRACT

Automatic differentiation (autodiff) has become the backbone for a

new wave of optimization-driven domains such as computer graph-

ics andmachine learning over the past decade. However, existing au-

todiff systems face limitations, either lacking support for in-browser

development or failing to harness more recent, compiler-based ap-

proaches to achieve both expressiveness and size-preserving differ-

entiation. This work introduces Rose, a portable, extensible autodiff

language that runs on the web. Through Rose, we aim to increase

accessibility to autodiff algorithms and empower end-user program-

ming in optimization-driven domains. We plan to evaluate Rose

by replacing the autodiff engines of real-world, client-side opti-

mization systems and assess the improvements on the computation

power, expressiveness, and efficiency of such systems.

1 PROBLEM AND MOTIVATION

Automatic differentiation is a computational technique used to

efficiently compute the derivatives of functions. The computed

derivatives can be used to analyze how small perturbations in a

program’s inputs can effect its outputs. These derivatives are partic-

ularly useful for determining which direction to move to optimize

an objective function, a process known as gradient-based optimiza-

tion.

Significant advancements in autodiff algorithms have resulted

in development of systems like PyTorch [5] and TensorFlow [1],

and more experimental autodiff projects like Google’s JAX [2, 3].

These frameworks provide high-level APIs for computing gradients

of functions, making it easier for users to leverage autodiff in their

work. However, most autodiff compilers do not run on the web.

With the increasing capabilities of web clients, there is great op-

portunity to leverage autodiff techniques in web-based applications.

Web-based languages require no installation and provide conve-

nient and familiar platforms for users to interact with optimization-

driven domains from any device with a web browser. Additionally,

harnessing autodiff for web-based applications unlocks opportu-

nities for optimization that centralize user interaction, but do not

necessarily need the raw native speed of machine learning training

frameworks.

TensorFlow.js [7] is a widely used framework for autodiff on

the web, demonstrating the impact and demand for such capabili-

ties. However, TensorFlow.js has several limitations that impact the

expressiveness and efficiency of the system. To automatically differ-

entiate a program, Tensorflow.js constructs a computation graph of

all functions and operations that subsequently undergoes differen-

tiation. The downside of this method is that the computation graph

corresponding to a TensorFlow.js program is asymptotically larger

than the size of the input program, making the differentiation pro-

cess computationally expensive. Additionally, TensorFlow.js uses a

layer of abstraction to differentiate programs, forcing all operations

to be at the array-level and computed in bulk. While this technique

is powerful, it limits the expressiveness of the system to only pro-

grams that can be differentiated using TensorFlow.js’s built in array

operations. Furthermore, TensorFlow.js does not support taking

higher-order derivatives for all functions, which are necessary for

certain optimization methods.

We present Rose, a language equipped to automatically differ-

entiate web-based programs without sacrificing expressive power

and computational efficiency. Our goal is to address the limitations

of existing autodiff systems and extend the reach of autodiff to

domains that can make good use of optimization like diagramming

and interactive simulation, which focus on end-user programming.

By leveraging the power of WebAssembly [4], Rose achieves

native-like performance in the browser while maintaining compati-

bility across platforms and devices. By introducing the concept of

differentiable functions into a program’s computation graph, Rose

can take the derivative of complicated programs while still asymp-

totically preserving the program, minimizing runtime and mem-

ory cost. Additionally, using recent, compiler-based techniques [6],

Rose can differentiate all operations within and between arrays

and can take higher-order derivatives of both built-in and custom

primitives. Additionally, Rose is designed to be extensible. Exten-

sibility allows users to construct custom autodiff primitives and

computations that may not be expressible in a constrained autodiff

system.

In the following sections, we demonstrate an example Rose pro-

gram and walk through some elements of our system design which

address and mitigate the aforementioned limitations of existing

autodiff systems.

2 ROSE BY EXAMPLE

To demonstrate the utility of Rose, we provide a small JavaScript

program, comprised of two .js files. A distinguishing feature of

Rose is that it closed under automatic differentiation, meaning

that anything that can be written in Rose can be automatically

differentiated as many times as needed. This program first extends

the Rose language with the custom differentiable primitives, pow
and log. Using the newly defined primitives, the program then

applies a set of compiled differentiable functions to an input vector

corresponding to the x and y coordinates of a point in 2D space.

Extensibility in Rose is achieved through the custom function,
enabling users to construct their own primitives for differentiation.

In Listing 1, custom.js illustrates an example of extending Rose

by adding a new pow function that takes its first argument and

raises it to the power of its second argument. This file also defines a

custom helper function, log, that is utilized when the pow function

is differentiated.

To define a new differentiable primitive in Rose using the custom
function, onemust provide both the implementation of the primitive

itself and an implementation of its derivative. Note that in Rose,

only the definition of one derivative is needed in order to derive the

https://orcid.org/0000-0002-3926-683X
https://orcid.org/0000-0002-7107-7043
https://orcid.org/0000-0002-9672-5297


Raven Rothkopf, Sam Estep, and Joshua Sunshine

1 import { Real, Vec, add, custom, div, mul } from "rose";
2 const log = custom([Real], Real,
3 (x) => Math.log(x),
4 (x, dx) => [log(x), div(dx, x)]
5 );
6 const pow = custom([Vec(Real, 2)], Real,
7 (v) => Math.pow(v[0], v[1]),
8 (v, dv) => {
9 const z = pow(v);
10 const [x, y] = v;
11 const [dx, dy] = dv;
12 return [
13 z,
14 mul(z, add(mul(div(y, x), dx), mul(log(x), dy)))
15 ];
16 });

Listing 1: Defining custom primitives in Rose.

vector-Jacobian product (VJP), a different kind of derivative that is

more efficient for computing the gradient in numerical optimization,

but is often much more challenging to specify [6]. This technique

enables users to apply a breadth of differentiation techniques to

their custom primitives without needing to separately implement

them.

The following file then imports the custom primitives defined in

Listing 1, and demonstrates how they can be used and differentiated

using the Rose vjp function.

1 import { Real, Vec, fn, jit, vjp } from "rose";
2 import { pow } from "./custom.js";
3 const Vec2 = Vec(Real, 2);
4 const g = fn([Vec2], Vec2, (v) => vjp(pow)(v).vjp(1));
5 const h = fn([Vec2], Vec(Vec2, 2), (v) => {
6 const x = vjp(g)(v);
7 return [x.vjp([1, 0]), x.vjp([0, 1])];
8 });
9 const l = await Promise.all([jit(pow), jit(g), jit(h)]);
10 export default (x, y) => l.map((f) => f([x, y]));

Listing 2: A Rose program.

This file takes an imported function, pow, that calculates the
result of raising the first argument to the power of the second

argument, and computes its gradient and Hessian using a Rose

autodiff function, vjp, which transforms the input function. The

resulting gradient and Hessian correspond to the first and second

order partial derivatives of a function, respectively. They provide

information about the rate and direction a function is changing,

which is crucial for optimization.

The custom primitive, pow, and the two differentiable functions

from Listing 2 are compiled and composed into a program that

could be used to compute the local approximation of the quadratic

form of the Rose pow function at a specified point.

A mock-up visualization of the local quadratic approximation of

the pow function is provided in Fig. 1. Since the derivatives can be

calculated in the browser using Rose, the user can interact with the

visualization in their browser, dragging the point along the xy plane

and observing the corresponding function’s changes in 3D space.

Since the Rose compiler both runs in and emits WebAssembly, the

user could even specify their own mathematical expression for

which Rose can take derivatives through the interface.

Figure 1: An interactive visualization of the quadratic ap-

proximation of the pow function. Users can drag the black

dot around the 2D plane using the gray arrows, changing the

approximation of the pow function’s derivative in 3D space

represented by the blue curved surface. Since Rose runs in

the browser, the approximation can be recomputed on the

user’s device.

3 EVALUATION

In order to evaluate the utility of the Rose language, we provide an

example of its application to an existing web-based, optimization-

driven domain: mathematical diagramming. Penrose [8] is a set

of three domain specific languages and an optimizer for making

conceptual diagrams, and it uses a custom-built JavaScript autod-

iff engine. Penrose runs completely client-side, enabling users to

construct mathematical diagrams directly in their browser.

Like TensorFlow.js, Penrose computation graphs grow asymp-

totically larger than their input program without the concept of

differentiable functions introduced by Rose. Additionally, the Pen-

rose autodiff engine has a similarly limited expressiveness, with no

support for extensibility and taking higher-order derivatives.

We plan to port the Penrose library of differentiable functions

to Rose and assess the resulting impact on the computation power,

expressiveness, and efficiency of the Penrose system.

4 CONCLUSION

We have presented Rose, a portable, extensible autodiff system

designed to address the limitations of existing web-based autodiff

frameworks and target optimization for end-user programming.

Prioritizing accessible, expressive, and extensible web-based autod-

iff will lower the barrier of entry to optimization-driven domains

and encourage user interaction through intuitive web interfaces.

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,



Rose: Extensible Autodiff on the Web

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorflow.org/ Software available from tensorflow.org.

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, et al. 2018. JAX: composable transformations of Python+

NumPy programs. (2018).

[3] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling machine

learning programs via high-level tracing. Systems for Machine Learning 4, 9 (2018).
[4] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the

Web up to Speed with WebAssembly. SIGPLAN Not. 52, 6 (jun 2017), 185–200.

https://doi.org/10.1145/3140587.3062363

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in PyTorch. In NIPS-W.

[6] Alexey Radul, Adam Paszke, Roy Frostig, Matthew J. Johnson, and Dougal

Maclaurin. 2023. You Only Linearize Once: Tangents Transpose to Gradients.

Proc. ACM Program. Lang. 7, POPL, Article 43 (jan 2023), 29 pages. https:

//doi.org/10.1145/3571236

[7] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Charles Nicholson, Nick Kreeger,

Ping Yu, Shanqing Cai, Eric Nielsen, David Soegel, Stan Bileschi, et al. 2019.

Tensorflow. js: Machine learning for the web and beyond. Proceedings of Machine
Learning and Systems 1 (2019), 309–321.

[8] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,

Joshua Sunshine, and Keenan Crane. 2020. Penrose: From Mathematical Notation

to Beautiful Diagrams. ACM Trans. Graph. 39, 4, Article 144 (aug 2020), 16 pages.

https://doi.org/10.1145/3386569.3392375

https://www.tensorflow.org/
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3571236
https://doi.org/10.1145/3571236
https://doi.org/10.1145/3386569.3392375

	Abstract
	1 Problem and Motivation
	2 Rose by Example
	3 Evaluation
	4 Conclusion
	References

